Standard

SAE 2016-01-9082

Current
Preview Preview is not available

Existing or new amendments and versions must be purchased separately.

Language
Services

Abstract

Polymer matrix composites are increasingly adopted in aerospace and automotive industries due to their many attributes, such as their high strength to weight ratio, tailorability, and high fatigue and durability performance. However, these materials also have complex damage and failure mechanisms, such as delaminations, which can severely degrade their strength and fatigue performance. To effectively and safely use composite materials in primary structures, it is essential to assess composite damage response for development of accurate predictive models. Therefore, this study focuses on determining the response of damaged and undamaged carbon epoxy beams subjected to vibration loadings at elevated temperatures. The Hilbert-Huang Transform (HHT) technique is used to analyze the beams’ modal response. The HHT shows potential in identifying the nonlinear damaged response of the beams. Using empirical mode decomposition to separate superposed modes of signals, several intrinsic mode functions can be determined which can reveal more information about complex nonlinear signals than traditional data analysis techniques such as the Fourier Transform. The composite beams are fabricated from an out-of-autoclave uniaxial carbon/epoxy prepreg (CYCOM 2x-5320-1/T650). Delamination damage in the composite layups is introduced by insertion of mold release wax films during fabrication. A shaker-table fixture was used for the vibration testing of all beams in a vertical cantilever configuration. High temperature piezoelectric accelerometers were used to obtain the vibration data for a frequency range of 1-61 Hz. This study investigates the effect of damage on the measured vibration data using intrinsic mode functions and Hilbert Huang spectrums.

Products specifications

  • Standard from SAE International
  • Published:
  • Document type: IS
  • Pages
  • Publisher: SAE International
  • Distributor: SAE International